Мирный атом в каждый дом – миниатюрные атомные реакторы для всех. Ядерный реактор своими руками (1 фото) Миниатюрные ядерные реакторы


1. Свободнопоршневой двигатель Стирлинга работает от нагревания «атомным паром» 2. Индукционный генератор дает около 2 Вт электроэнергии для питания лампы накаливания 3. Характерное голубое свечение — это черенковское излучение электронов, выбитых из атомов гамма-квантами. Может служить в качестве отличного ночника!

Для детей от 14 лет Юный исследователь сможет самостоятельно собрать пусть и маленький, но настоящий ядерный реактор, узнать, что такое мгновенные и запаздывающие нейтроны, и увидеть динамику разгона и торможения цепной ядерной реакции. Несколько простых опытов с гамма-спектрометром позволят разобраться с наработкой различных продуктов деления и поэкспериментировать с воспроизводством топлива из модного ныне тория (кусочек сульфида тория-232 прилагается). Входящая в комплект книга «Основы ядерной физики для самых маленьких» содержит описание более 300 опытов с собранным реактором, так что простор для творчества огромен

Исторический прототип Набор Atomic Energy Lab (1951) давал возможность школьникам приобщиться к самой передовой области науки и технологии. Электроскоп, камера Вильсона и счетчик Гейгера-Мюллера позволяли провести множество интереснейших опытов. Но, конечно, не настолько интересных, как сборка действующего реактора из российского набора «Настольная АЭС»!

В 1950-х годах, с появлением атомных реакторов, перед человечеством, казалось бы, замаячили блестящие перспективы решения всех энергетических проблем. Инженеры-энергетики проектировали атомные электростанции, судостроители — атомные электроходы, и даже автоконструкторы решили присоединиться к празднику и использовать «мирный атом». В обществе возник «атомный бум», и промышленности стало не хватать квалифицированных специалистов. Требовался приток новых кадров, и была развернута серьезная образовательная компания не только среди студентов университетов, но и среди школьников. Например, A.C. Gilbert Company выпустила в 1951 году детский набор Atomic Energy Lab, содержащий несколько небольших радиоактивных источников, необходимые приборы, а также образцы урановой руды. Этот «наисовременнейший научный набор», как было написано на коробке, позволял «юным исследователям провести более 150 захватывающих научных экспериментов».

Кадры решают все

За прошедшие полвека ученые получили несколько горьких уроков и научились строить надежные и безопасные реакторы. И хотя сейчас в этой области наблюдается спад, вызванный недавней аварией на Фукусиме, вскоре он вновь сменится подъемом, и АЭС по‑прежнему будут рассматриваться как чрезвычайно перспективный способ получения чистой, надежной и безопасной энергии. Но уже сейчас в России чувствуется дефицит кадров, как ив 1950-х. Чтобы привлечь школьников и повысить интерес к атомной энергетике, Научно-производственное предприятие (НПП) «Экоатомконверсия», взяв пример с A.C. Gilbert Company, выпустила образовательный набор для детей от 14 лет. Разумеется, наука за эти полвека не стояла на месте, поэтому, в отличие от своего исторического прототипа, современный набор позволяет получить намного более интересный результат, а именно — собрать на столе самый настоящий макет атомной электростанции. Разумеется, действующий.

Грамотность с пеленок

«Наша компания родом из Обнинска- города, где атомная энергия знакома и привычна людям чуть ли не с детского сада, — объясняет «ПМ» научный руководитель НПП «Экоатомконверсия» Андрей Выхаданко. — И все понимают, что бояться ее совершенно не надо. Ведь по‑настоящему страшна лишь неизвестная опасность. Поэтому мы и решили выпустить этот набор для школьников, который позволит им вдоволь поэкспериментировать и изучить принципы работы атомных реакторов, не подвергая себя и окружающих серьезному риску. Как известно, знания, полученные в детстве, самые прочные, так что выпуском этого набора мы надеемся значительно понизить вероятность повторения Чернобыля или

Фукусимы в будущем».

Ненужный плутоний

За годы работы множества АЭС скопились тонны так называемого реакторного плутония. Он состоит в основном из оружейного Pu-239, содержащего около 20% примеси других изотопов, в первую очередь Pu-240. Это делает реакторный плутоний абсолютно непригодным для создания ядерных бомб. Отделение примеси оказывается весьма сложным, так как разница масс между 239-м и 240-м изотопами — всего 0,4%. Изготовление ядерного топлива с добавкой реакторного плутония оказалось технологически сложным и экономически невыгодным, так что этот материал остался не у дел. Именно «бросовый» плутоний и использован в «Наборе юного атомщика», разработанном НПП «Экоатомконверсия».

Как известно, для начала цепной реакции деления ядерное топливо должно иметь определенную критическую массу. Для шара из оружейного урана-235 она составляет 50 кг, из плутония-239 — только 10. Оболочка из отражателя нейтронов, например бериллия, может снизить критическую массу в несколько раз. А использование замедлителя, как в реакторах на тепловых нейтронах, снизит критическую массу более чем в десять раз, до нескольких килограммов высокообогащенного U-235. Критическая масса Pu-239 и вовсе составит сотни граммов, и именно такой сверхкомпактный реактор, умещающийся на столе, разработали в «Экоатомконверсии».

Что в сундучке

Упаковка набора скромно оформлена в черно-белых тонах, и лишь неяркие трехсегментные значки радиоактивности несколько выделяются на общем фоне. «Никакой опасности на самом деле нет, — говорит Андрей, указывая на слова «Совершенно безопасно!», написанные на коробке. — Но таковы требования официальных инстанций». Коробка тяжеленная, что неудивительно: в ней находится герметичный транспортировочный свинцовый контейнер с тепловыделяющей сборкой (ТВС) из шести плутониевых стержней с циркониевой оболочкой. Помимо этого набор включает внешний корпус реактора из термостойкого стекла с химической закалкой, крышку корпуса со стеклянным окном и гермовводами, корпус активной зоны из нержавеющей стали, подставку под реактор, управляющий стержень-поглотитель из карбида бора. Электрическая часть реактора представлена свободнопоршневым двигателем Стирлинга с соединительными полимерными трубками, маленькой лампой накаливания и проводами. В комплект также входят килограммовый пакет с порошком борной кислоты, пара защитных костюмов с респираторами и гамма-спектрометр со встроенным гелиевым детектором нейтронов.

Постройка АЭС

Сборка действующего макета АЭС по прилагаемому руководству в картинках очень проста и занимает менее получаса. Надев стильный защитный костюм (он нужен только на время сборки), вскрываем герметичную упаковку с ТВС. Затем вставляем сборку внутрь корпуса реактора, накрываем корпусом активной зоны. Под конец защелкиваем сверху крышку с гермовводами. В центральный нужно вставить до конца стержень-поглотитель, а через любой из двух других заполнить активную зону дистиллированной водой до черты на корпусе. После заполнения к гермовводам подключаются трубки для пара и конденсата, проходящие через теплообменник двигателя Стирлинга. Сама АЭС на этом закончена и готова к запуску, остается лишь поместить ее на специальную подставку в аквариум, заполненный раствором борной кислоты, который отлично поглощает нейтроны и защищает юного исследователя от нейтронного облучения.

Три, два, один — пуск!

Подносим гамма-спектрометр с датчиком нейтронов вплотную к стенке аквариума: небольшая часть нейтронов, не представляющая угрозы для здоровья, все-таки выходит наружу. Медленно поднимаем регулировочный стержень до начала быстрого роста потока нейтронов, означающего запуск самоподдерживающейся ядерной реакции. Остается только дождаться выхода на нужную мощность и на 1 см по меткам вдвинуть стержень назад, чтобы скорость реакции стабилизировалась. Как только начнется кипение, в верхней части корпуса активной зоны появится прослойка пара (перфорация в корпусе не позволяет этой прослойке оголить плутониевые стержни, что могло бы привести к их перегреву). Пар по трубке идет вверх, к двигателю Стирлинга, там он конденсируется и стекает по выходной трубке вниз внутрь реактора. Разность температур между двумя концами двигателя (один нагревается паром, а другой охлаждается комнатным воздухом) преобразуется в колебания поршня-магнита, а тот, в свою очередь, наводит переменный ток в окружающей двигатель обмотке, зажигая атомный свет в руках юного исследователя и, как надеются разработчики, атомный интерес в его сердце.

Примечание редакции: данная статья опубликована в апрельском номере журнала и является первоапрельским розыгрышем.

Трагедии на Чернобыльской АЭС и АЭС «Фукусима» пошатнули уверенность человечества в том, что за атомной энергетикой будущее. Некоторые из стран, такие, как Германия, вообще пришли к выводу, что от АЭС следует отказаться вовсе. Но вопрос использования атомной энергетики очень серьезный и крайностей в выводах не терпит. Тут надо четко оценить все плюсы и минусы, и скорее – искать золотую середину и альтернативные решения использования атома.

В качестве источников энергии на Земле сегодня используются органические ископаемые, нефть, газ; возобновляемые источники энергии – солнце, ветер, древесное топливо; гидроэнергия – реки и всевозможные пригодные для этих целей водоемы. Но запасы нефти и газа истощаются, соответственно, дорожает и энергия, полученная с их помощью. Энергия, получаемая с помощью ветра и солнца – достаточно затратное удовольствие, в силу дороговизны солнечных и ветровых электростанций. Возможности энергии водоемов тоже очень ограничены. Поэтому многие ученые все же приходят к выводу, что если в России закончатся запасы нефти и газа, альтернативы отказа от ядерной энергетики, как источника энергии, очень малы.Доказано, чтомировые ресурсы ядерного горючего, такого, как плутоний и уран во много раз превышают энергоресурсы природных запасов органического топлива. Работа же самих АЭС имеет ряд преимуществ перед другими электростанциями. Их можно строить везде, независимо от энергетических ресурсов района, топливо АЭС отличается очень большим содержанием энергии, эти станции не делают в атмосферу вредных выбросов, таких как ядовитые вещества и парниковые газы, и стабильно дают самую дешевую энергию.В мировом рейтинге по уровню ТЭС Россия очень сильно отстает, а по показателям АЭС – мы являемся одними из первых, поэтому для нашей страны отказ от атомной энергетики может грозить большой экономической катастрофой. Тем более именно в России особенно актуальны отдельные вопросы в развитии атомной энергетики – такие, как строительство мини АЭС. Почему? Тут все очевидно и просто.

Проект одной из АСММ — «Унитерм»

Атомные реакторы малой мощности (100-180 МВт) уже несколько десятков лет успешно используются в судоходстве нашей страны. В последнее время все чаще начинают говорить о необходимости их использования для обеспечения энергией отдаленных районов России. Тут малые АЭС смогут решить проблему энергоснабжения, которая всегда стояла остро во многих труднодоступных регионах. Две трети России – зона децентрализованного энергоснабжения. Прежде всего, это Крайний Север и Дальний Восток. Уровень жизни здесь во многом зависит от энергообеспечения. Кроме того, данные регионы представляют собой большую ценность в силу большого сосредоточения полезных ископаемых. Их добыча не развивается или останавливается зачастую именно по причине большой затратности в сфере энергетики и транспорта. Энергия здесь поступает от автономных источников, использующих органическое топливо. А завоз такого топлива в труднодоступные районы обходится очень недешево по причине необходимых огромных объемов и большого расстояния. Например, в республике Саха в Якутии, в силу разорванности энергетической системы на маломощные изолированные участки, стоимость электроэнергии больше в 10 раз, чем на «большой земле». Совершенно ясно, что для большой территории с низкой плотностью населения проблема развития энергетики не может решиться крупным сетевым строительством. Атомные станции малой мощности (АСММ) — один из самых реальных выходов из ситуации в данном вопросе. Ученые уже насчитали 50 регионов в России, где нужны подобные станции. Они, конечно, проиграют по стоимости электроэнергии большому энергоблоку (строить его здесь просто нерентабельно), но выиграют у источника на органическом топливе. По подсчетам специалистов АСММ могут сэкономить до 30% стоимость электроэнергии в труднодоступных регионах. Маленькие объемы расходуемого топлива, удобства в перемещении, небольшие трудозатраты по вводу в работу, минимум обслуживающего персонала – эти характеристики делают АСММ незаменимыми энергоисточниками в дальних районах.

Незаменимость АСММ уже давно осознали и во многих других странах мира. Японцы доказали, что подобные станции будут очень эффективны в условиях мегаполисов. Работы одного отдельного такого устройства достаточно для того, чтобы снабдить энергией определенное количество жилых домов или небоскребов. Маленьким реакторам не требуется дорогое и подчас отсутствующее место для их размещения в мегаполисе. Также, японские разработчики уверяют, что эти реакторы могут компенсировать пиковые нагрузки в крупных городских зонах. Японская компания Toshibа уже длительное время разрабатывает проект АСММ — Toshiba 4S. Срок его эксплуатации по прогнозам разработчиков – 30 лет без перезагрузки топлива, мощность – 10 МВт, габариты — 22 на 16 на 11 метров, топливо такой мини-АЭС — металлический сплав плутония, урана и циркония. Эта станция не требует постоянного обслуживания, а нуждается лишь в эпизодическом контроле. Такой реактор японцы предлагают использовать и при добыче нефти, а их серийный выпуск хотят наладить к 2020 году.

Не отстают от Японии и американские ученые. В течение нескольких лет они обещают выпустить в продажу небольшой ядерный реактор, который будет обеспечивать энергией небольшие поселки. Мощность такой станции – 25 МВт, по размеру она немногим больше собачьей конуры. Электроэнергию эта мини-АЭС будет вырабатывать круглосуточно и ее стоимость за 1 киловатт-час составит всего 10 центов.Надежность тоже на высшем уровне: помимо стального корпуса, Hyperion закатан в бетон.Менять ядерное топливо здесь смогут только специалисты, и делать это надо будет каждые 5-7 лет. Выпускающая компания Hyperion, уже получила лицензию на выпуск таких ядерных реакторов. Приблизительная стоимость станции 25 миллионов долларов. Для городка, хотя бы с 10-ю тысячами домов – совсем недорого.

Что касается России, то здесь над созданием малых АЭС работают достаточно давно. Учеными Курчатовского института 30 лет назад была разработана мини – АЭС «Елена», которая вообще не нуждается в обслуживающем персонале. Ее прототип функционирует на территории института до сих пор. Электрическая мощность станции – 100 КВт., она представляет собой цилиндр весом в 168 тонн, диаметром — 4,5 и высотой — 15 метров. «Елена» устанавливается в шахте на глубине 15-25 метров и закрывается бетонными перекрытиями. Ее электроэнергии хватит на обеспечение теплом и светом небольшого поселка. В России разработано еще несколько проектов, подобных «Елене». Все они соответствуют необходимым требованиям надёжности, безопасности, недоступности для посторонних, нераспространении ядерных материалов и т.д., но требуют немалых строительных работ при установке и не соответствуют критериям мобильности.

В 60-е годы прошла испытания малая передвижная станция «ТЭС-3». Она состояла из четырех гусеничных самоходных транспортеров, поставленных на усиленную базу танка Т-10. На двух транспортерах были размещены парогенератор и водяной реактор, на оставшихся поместили турбогенератор с электрической частью и систему управления станцией. Мощность такой станции составила -1,5 МВт.

В 80-е годы в Беларуси разработали малую АЭС на колесах. Станцию назвали «Памир» и поставили на шасси МАЗ-537 «Ураган». Ее составили четыре автофургона, которые были соединены газовыми шлангами высокого давления. Мощность «Памира» составила 0,6 МВт. Станция в первую очередь предназначалась для работы в широком диапазоне температур, именно поэтому была оснащена газоохлаждаемым реактором. Но, произошедшая как раз в эти годы Чернобыльская авария, «автоматом» уничтожила проект.

Все эти станции имели определенные проблемы, которые препятствовали их широкому внедрению в производство. Во-первых, невозможность обеспечить качественную защиту от излучения по причине большого веса реактора и ограниченной грузоподъемности транспорта. Во-вторых, эти мини-АЭС работали на высокообогащенном ядерном топливе «оружейного» качества, что противоречило международным нормам, которые запрещали распространение ядерного оружия. В-третьих, для самоходных атомных станций было сложно создать защиту от дорожных происшествий и террористов.

Весь спектр требований к АСММ удовлетворила плавучая атомная теплоэлектростанция. Она была заложена в Санкт-Петербурге в 2009 году. Данная мини-АЭС состоит из двух реакторных установок на гладкопалубном несамоходном судне. Срок ее эксплуатации – 36 лет, в течение которых, через каждые 12 нужно будет перезагружать реакторы. Станция может стать эффективным источником электричества и тепла для труднодоступных регионов страны. Еще одна из ее функций – опреснение морской воды. В сутки она может выдавать от 100 до 400 тысяч тонн. В 2011 году проект получил положительное заключение государственной экологической экспертизы. Не позднее 2016 года плавучую АЭС планируют разместить на Чукотке. Росатом ожидает от этого проекта больших зарубежных заказов.

Также недавно стало известно, что одна из подконтрольных Олегу Дерипаске компаний — «Евросибэнерго», вместе с Росатомом объявила об организации предприятия «АКМЭ-Инжиниринг», которое будет работать над созданием АСММ и заниматься их продвижением на рынке. В работе этих станций хотят использовать реакторы набыстрых нейтронах со свинцововисмутовым теплоносителем, которыми в советское время были оснащены атомные подлодки. Обеспечивать энергией они призваны отдаленные районы, неподключенные к электросетям. Организаторы предприятия планируют заполучить 10-15% мирового рынка мини-АЭС. В успехе данной кампании аналитиков заставляет сомневаться заявленная стоимость станции, которая по прогнозам «Евросибэнерго» будет равняться стоимости ТЭЦ такой же мощности.

Успех малых АЭС на рынке мировой энергетики предвидеть несложно. Необходимость их присутствия там очевидна. Решаемы и вопросы с усовершенствованием этих источников энергии и приведением в соответствие к необходимым параметрам. Глобальной лишь остается проблема стоимости, которая на сегодняшний день в 2-3 раза больше АЭС в 1000 МВт. Но уместно ли такое сравнение в данном случае? Ведь у АСММ совершенно другая ниша в использовании – они должны обеспечивать автономных потребителей. Никто же из нас не додумается сравнивать стоимость киловатт, расходуемых часами, работающими от батарейки, и микроволновкой, которая запитана от розетки.


Некоторым удалось почти успешно. Один из таких умельцев - Дэвид Хан, американский школьник. Это реально круто!

Реактор в сарае

В раннем детстве Дэвид Хан был самым обычным ребенком. Белобрысый и неуклюжий мальчик играл в бейсбол и гонял футбольный мяч, а в какой-то момент вступил в бойскауты. Его родители Кен и Пэтти, развелись и Дэвид жил со своим отцом и мачехой, которую звали Кэти в местечке Клинтон. Выходные дни он обычно проводил в Голф Манор со своей матерью и ее другом, которого звали Майкл Поласек.

Резкие перемены произошли, когда ему исполнилось десять. Тогда отец Кати подарил Дэвиду книгу The Golden Book of Chemistry Experiments («Золотая книга химических экспериментов»). Он увлеченно зачитывался ею. В 12 лет он уже делал выписки из институтских учебников по химии своего отца, а в 14 лет он сделал нитроглицерин.

Однажды ночью их дом в Клинтоне дрогнул от мощного взрыва в подвале. Кен и Кэти обнаружили Дэвида в полубессознательном состоянии, лежащим на полу. Оказалось, что он измельчал какое-то вещество отверткой, и оно у него загорелось. Его срочно отвезли в госпиталь, где ему промыли глаза.

Кэти запретила заниматься экспериментами у нее дома, а потому он перенес свои исследования в сарай своей матери, в Голф Манор. Ни Пэтти ни Майкл не имели ни малейшего понятия, чем занят в сарае этот стеснительный подросток, хотя было странным то что он в сарае часто одевал защитную маску, а иногда снимал с себя одежду лишь около двух часов ночи, работая допоздна. Они списывали это все на свое собственное ограниченное образование.
Майкл, однако, припоминал, как Дэвид однажды сказал ему: «Когда-нибудь у нас кончится нефть».

Убежденный в том, что сыну нужна дисциплина, отец Дэвида - Кен считал, что решение вопроса состоит в цели, которую тот не может достигнуть - Скаутский Орел, для получения которого требовался 21 скаутский знак. Дэвид заработал знак за изучение атомной энергии в мае 1991 г., пять месяцев спустя своего пятнадцатилетия. Но теперь у него были более сильные амбиции.

Придуманная личность

Он решил, что будет заниматься просвечиванием всего, что сможет, а для этого ему надо построить нейтронную «пушку». Чтобы получить доступ к радиоактивным материалам, Дэвид решил использовать приемы из различных громких статей в журналах. Он придумал вымышленную личность.

Он написал письмо в Комиссию по Ядерному Регулированию (Nuclear Regulatory Commission (NRC)), в котором он утверждал, что является учителем физики в старших классах в Долине Чипева (Chippewa Valley High School). Директор агентства по производству и распространению изотопов, Дональд Эрб, описал ему в деталях выделение и получение радиоактивных элементов, а также объяснил характеристики некоторых из них, в частности, какие из них при облучении нейтронами, могут поддерживать цепную ядерную реакцию.

Когда Дэвид поинтересовался риском таких работ, то Эрб уверил его «что опасностью можно пренебречь», так как «для обладания любыми радиоактивными материалами в количествах и формах способных представлять угрозу требуется получение лицензии от Комиссии по Ядерному Регулированию или эквивалентной организации».

Дэвид читал, что крохотные количества радиоактивного изотопа америция-241 можно найти в детекторах дыма. Он связался с компаниями по изготовлению детекторов и сообщил им, что ему требуется большое количество этих устройств, для выполнения одного школьного проекта. Одна из компаний продала ему около сотни неисправных детекторов по доллару за штуку.

Он не знал, где точно в детекторе находится америций, а потому написал в одну из фирм в Иллинойсе, которая занималась электроникой. Сотрудница из службы по работе с клиентами компании ответила ему, что они будут рады ему помочь. Благодаря ее помощи, Дэвиду удалось извлечь материал. Он поместил америций внутри полого куска свинца с очень маленьким отверстием с одной стороны, из которого, как он рассчитывал, будут выходить альфа-лучи. Перед отверстием он поместил лист алюминия так, чтобы его атомы абсорбировали альфа-частицы и излучали нейтроны. Нейтронная пушка была готова.

Калильная сетка в газовом фонаре представляет собой небольшой рассекатель, через который проходит пламя. Оно покрыто составом, в который входил торий-232. При бомбардировке нейтронами из него должен был получиться расщепляемый изотоп уран - 233. Дэвид приобрел несколько тысяч калильных сеток в различных магазинах по продаже складских излишков и пережег их паяльной лампой в кучку золы.

Чтобы выделить торий из золы, он приобрел литиевых батарей на тысячу долларов и изрезал их все на куски ножницами по металлу. Он завернул литиевые обрезки и ториевую золу в шар из алюминиевой фольги и нагрел его в пламени бунзеновской горелки. Он выделил чистый торий в количестве большем, чем он встречается в природе в 9000 раз и в 170 раз больше уровня, которого требовало наличие лицензии NRC. Но нейтронная пушка Дэвида на основе америция не была достаточно мощной, чтобы торий превратился в уран.

Еще помощь от NRC

Дэвид старательно работал после школы в разного рода закусочных, бакалейных магазинчиках и мебельных складах, но эта работа была просто источником денег для его экспериментов. В школе он учился без особого усердия, никогда и ничем не выделялся, получил плохие оценки на общем экзамене по математике и тестах по чтению (но при этом показал отличные результаты по естествознанию).

Для новой пушки он хотел найти радий. Дэвид начал лазить по окрестным свалкам и антикварным магазинам в поисках часов, где, в светящейся краске циферблата использовался радий. Если такие часы ему попадались, то он соскребал с них краску и складывал ее в пузырек.

Однажды он медленно прогуливался по улице городка Клинтон, и как он рассказывал, в одной из витрин антикварного магазина, ему попались на глаза старые настольные часы, которые его заинтересовали. При близком «хаке» часов он обнаружил, что тут можно наскрести целый пузырек радиевой краски. Он купил часы за $10.

Потом он занялся радием и перевел его в форму соли. Понимал он это или нет, но в этот момент он подвергал себя опасности.

Эрб из NRC сообщил ему, что «лучший материал из которого альфа-частицы могут продуцировать нейтроны - это бериллий». Дэвид попросил своего друга, чтобы тот стащил для него бериллий из химической лаборатории, а затем поместил его перед свинцовой коробкой, внутри которой находился радий. Его занятной пушке из америция на замену пришла более мощная радиевая пушка.

Дэвид сумел найти некоторое количество смоляной (урановой) обманки, руды, в которой уран содержится в небольших количествах, и раздробил ее кувалдой в пыль. Он направил лучи из его пушки на порошок, в надежде, что ему удастся получить, хотя бы некоторое количество расщепляемого изотопа. У него не получилось. Нейтроны, представлявшие снаряды в его пушке, двигались слишком быстро.

«Неминуемая опасность»

После того как ему исполнилось 17 лет, Дэвидом овладела идея построения модели бридерного реактора, то есть такого ядерного реактора, который не только генерировал электричество, но и производил новое топливо. В его модели должны были использоваться настоящие радиоактивные элементы и происходить настоящие ядерные реакции. В качестве рабочего чертежа он собирался использовать схему, которую он нашел в одном из учебников своего отца.

Всячески пренебрегая техникой безопасности, Дэвид смешал радий и америций, которые находились у него на руках вместе с бериллием и алюминием. Смесь была завернута в алюминиевую фольгу, из которой он сделал подобие рабочей зоны ядерного реактора. Радиоактивный шар был окружен небольшими, завернутыми в фольгу кубиками из ториевой золы и урановой пудры, связанные вместе сантехническим бинтом.

«Он был радиоактивен, как черт знает что», - говорил Дэвид, - «гораздо больше, чем в разобранном состоянии». Тут он начал понимать, что подвергает себя и окружающих серьезной опасности.

Когда счетчик Гейгера, который был у Дэвида начал регистрировать радиационное излучение за пять домов от местожительства его матери, он решил что у него «слишком много радиоактивных веществ в одном месте», после чего он решил разобрать реактор. Он спрятал часть материалов в доме матери, оставил некоторую часть в сарае, а оставшееся сложил в багажник своего «Понтиака».

В 2:40 ночи 31 августа, 1994 г. в полицию Клинтона, позвонил неизвестный и сообщил, что какой-то молодой человек, похоже, пытается украсть покрышки от машины. Когда полиция приехала, Дэвид сказал им, что он собирается встречать своего друга. Полиции это показалось неубедительным, и они решили осмотреть автомобиль.

Они открыли багажник и обнаружили в нем ящик из под инструментов, который был закрыт на замок и замотан сантехническим бинтом. Здесь же лежали замотанные в фольгу кубики с каким-то загадочным серым порошком, небольшие диски, цилиндрические металлические предметы, а также ртутные реле. Полицейских сильно насторожила коробка из под инструментов, про которую Дэвид сказал им, что она радиоактивна, и они боялись ее как атомной бомбы.

Был введен в действие федеральный план противодействия радиоактивной угрозе, а официальные лица штата начали консультироваться с EPA и NRC.

В сарае, эксперты-радиологи обнаружили алюминиевую форму для выпечки пирогов, чашку Pyrex из огнеупорного стекла, ящик из-под молочных бутылок, а также массу других вещей, которые были заражены радиацией, уровень которой в тысячу раз превышал естественный. Так как ее могло разнести по округе ветром и дождем, а также отсутствием сохранности в самом сарае, то в соответствии с меморандумом EPA,» это представляло собой неминуемую угрозу общественному здоровью».

После того как рабочие в защитных костюмах разобрали сарай, они сложили все, что оставалось в 39 бочек, которые были погружены на грузовики и вывезены на могильник в Великую Соляную Пустыню. Там, останки экспериментов Дэвида были захоронены вместе с другим радиоактивным мусором.

«Это была ситуация, которую регулирование было не в силах предвидеть», - сказал Дэйв Минаар, эксперт-радиолог из Мичиганского Департамента Качества Окружающей Среды, - «Считалось, что обычный человек не сможет получить в руки технологию или материалы, которые требуются для занятий экспериментами в этой области».

Сейчас Дэвид Хан сейчас находится в ВМФ, где он читает о стероидах, меланине, генетическом коде, прототипах реакторов, аминокислотах и уголовном праве. «Я хотел, чтобы в моей жизни было что-нибудь заметное», - объясняет он теперь. «У меня еще есть время». По поводу получения им дозы радиации, он сказал, - «Я не думаю, что отнял у себя больше, чем пять лет жизни».

Ядерная энергия своми руками возможна. Шведская полиция задержала 31-летнего жителя города Энгельхольма по обвинению в самостоятельной сборке ядерного реактора. Мужчину задержали после того, как он уточнил у местных властей, не запрещает ли закон гражданам Швеции строить ядерные реакторы на кухне своей квартиры. Как объяснил задержанный, интерес к ядерной физике проснулся в нем еще в подростковые годы.

Житель Швеции начал свой эксперимент по строительству ядерного реактора своими руками в домашних условиях пол года назад. Радиоактивные вещества мужчина получил из-за рубежа. Другие необходимые материалы он извлек из разобранного пожарного датчика.

Мужчина совершенно не скрывал намерений построить ядерный реактор в домашних условиях и даже вел блог о том, как он его создает.

Несмотря на полную открытость эксперимента, власти узнали об активности шведа лишь спустя несколько недель - когда тот обратился в шведское госуправление по ядерной безопасности. В управлении мужчина надеялся узнать, законно ли строить дома ядерный реактор.

На это мужчине ответили, что к нему домой приедут специалисты, чтобы измерить уровень радиации. Однако вместе сними приехали полицейские.

«Когда они пришли, с ними была полиция. У меня был счетчик Гейгера, я не замечал проблем с радиацией», - заявил задержанный местной газете Helsingborgs Dagblad.

Полиция задержала мужчину для допроса, на котором он позднее рассказал правоохранительным органам о своих планах и был выпущен.

Мужчина заявил газете, что ему удалось своими руками собрать действующий ядерный реактор в домашних условиях.

«Чтобы он начал вырабатывать электричество, нужна турбина и генератор, и его очень сложно собрать самому», - сказал задержанный в интервью местной газете.

Как сообщается, на свой проект мужчина потратил порядка шести тысяч крон, что примерно равно 950$.

После инцидента с полицией он пообещал сосредоточиться на «теоретических» аспектах ядерной физики.

По материалам: «Газета.Ru»

Это не первый случай постройки ядерного реактора своими руками в домашних условиях.

Голф Манор, район местечка Коммерс, Мичиган, который находится в 25 милях от Детройта, относится к разряду мест, где в принципе не может произойти ничего необычного. Единственное достопримечательное событие в течение дня - это грузовик с мороженым, который выезжает из-за угла. Но 26 июня, 1995 г. запомнилось всем надолго.

Спросите об этом Дотти Пиз. Спускаясь вниз по Пинто Драйв, Пиз увидела около полудюжины человек, снующих по соседской лужайке. Трое из них, находившихся в респираторах и «лунных костюмах», разбирали электрическими пилами соседский сарай, складывали куски в большие стальные емкости, на которых стояли знаки радиоактивной опасности.

Примкнув к кучке других соседей, Пиз охватило чувство тревоги: «Мне стало сильно не по себе», - вспоминала она позже. В тот день, служащие Агентства по защите окружающей среды (Environmental Protection Agency (EPA)) публично заявили, что беспокоиться не о чем. Но истина была гораздо серьезней: сарай излучал опасное количество радиации, и в соответствии с EPA, около 40,000 жителей в этом городке подвергались риску.

Зачистку спровоцировал соседский мальчик, по имени Дэвид Хан. В свое время он занимался бойскаутским проектом, а затем попытался построить ядерный реактор в сарае своей матери.

Великое честолюбие

В раннем детстве Дэвид Хан был самым обычным ребенком. Белобрысый и неуклюжий мальчик играл в бейсбол и гонял футбольный мяч, а в какой-то момент вступил в бойскауты. Его родители Кен и Пэтти, развелись и мальчик жил со своим отцом и мачехой, которую звали Кэти в местечке Клинтон. Выходные дни он обычно проводил в Голф Манор со своей матерью и ее другом, которого звали Майкл Поласек.

Резкие перемены произошли, когда ему исполнилось десять. Тогда отец Кати подарил Дэвиду книгу The Golden Book of Chemistry Experiments («Золотая книга химических экспериментов»). Он увлеченно зачитывался ею. В 12 лет он уже делал выписки из институтских учебников по химии своего отца, а в 14 лет он сделал нитроглицерин.

Однажды ночью их дом в Клинтоне дрогнул от мощного взрыва в подвале. Кен и Кэти обнаружили мальчугана в полубессознательном состоянии, лежащим на полу. Оказалось, что он измельчал какое-то вещество отверткой, и оно у него загорелось. Его срочно отвезли в госпиталь, где ему промыли глаза.

Кэти запретила заниматься экспериментами у нее дома, а потому он перенес свои исследования в сарай своей матери, в Голф Манор. Ни Пэтти ни Майкл не имели ни малейшего понятия, чем занят в сарае этот стеснительный подросток, хотя было странным то что он в сарае часто одевал защитную маску, а иногда снимал с себя одежду лишь около двух часов ночи, работая допоздна. Они списывали это все на свое собственное ограниченное образование.

Майкл, однако, припоминал, как Дэв однажды сказал ему: «Когда-нибудь у нас кончится нефть».

Убежденный в том, что сыну нужна дисциплина, отец - Кен считал, что решение вопроса состоит в цели, которую тот не может достигнуть - Скаутский Орел, для получения которого требовался 21 скаутский знак. Дэвид заработал знак за изучение атомной энергии в мае 1991 г., пять месяцев спустя своего пятнадцатилетия. Но теперь у него были более сильные амбиции.

Придуманная личность

Он решил, что будет заниматься просвечиванием всего, что сможет, а для этого ему надо построить нейтронную «пушку». Чтобы получить доступ к радиоактивным материалам, которые необходимы для постройки и работы ядерного реактора в домашних условиях, юный ядерщик решил использовать приемы из различных громких статей в журналах. Он придумал вымышленную личность.

Он написал письмо в Комиссию по Ядерному Регулированию (Nuclear Regulatory Commission (NRC)), в котором он утверждал, что является учителем физики в старших классах в Долине Чипева (Chippewa Valley High School). Директор агентства по производству и распространению изотопов, Дональд Эрб, описал ему в деталях выделение и получение радиоактивных элементов, а также объяснил характеристики некоторых из них, в частности, какие из них при облучении нейтронами, могут поддерживать цепную ядерную реакцию.

Когда самоделкин поинтересовался риском таких работ, то Эрб уверил его «что опасностью можно пренебречь», так как «для обладания любыми радиоактивными материалами в количествах и формах способных представлять угрозу требуется получение лицензии от Комиссии по Ядерному Регулированию или эквивалентной организации».

Находчивый изобретатель читал, что крохотные количества радиоактивного изотопа америция-241 можно найти в детекторах дыма. Он связался с компаниями по изготовлению детекторов и сообщил им, что ему требуется большое количество этих устройств, для выполнения одного школьного проекта. Одна из компаний продала ему около сотни неисправных детекторов по доллару за штуку.

Он не знал, где точно в детекторе находится америций, а потому написал в одну из фирм в Иллинойсе, которая занималась электроникой. Сотрудница из службы по работе с клиентами компании ответила ему, что они будут рады ему помочь. Благодаря ее помощи, Дэвиду удалось извлечь материал. Он поместил америций внутри полого куска свинца с очень маленьким отверстием с одной стороны, из которого, как он рассчитывал, будут выходить альфа-лучи. Перед отверстием он поместил лист алюминия так, чтобы его атомы абсорбировали альфа-частицы и излучали нейтроны. Нейтронная пушка для обработки материалов для ядерного реактора была готова.

Калильная сетка в газовом фонаре представляет собой небольшой рассекатель, через который проходит пламя. Оно покрыто составом, в который входил торий-232. При бомбардировке нейтронами из него должен был получиться расщепляемый изотоп уран - 233. Юный физик приобрел несколько тысяч калильных сеток в различных магазинах по продаже складских излишков и пережег их паяльной лампой в кучку золы.

Чтобы выделить торий из золы, он приобрел литиевых батарей на тысячу долларов и изрезал их все на куски ножницами по металлу. Он завернул литиевые обрезки и ториевую золу в шар из алюминиевой фольги и нагрел его в пламени бунзеновской горелки. Он выделил чистый торий в количестве большем, чем он встречается в природе в 9000 раз и в 170 раз больше уровня, которого требовало наличие лицензии NRC. Но нейтронная пушка на основе америция не была достаточно мощной, чтобы торий превратился в уран.

Еще помощь от NRC

Дэвид старательно работал после школы в разного рода закусочных, бакалейных магазинчиках и мебельных складах, но эта работа была просто источником денег для его экспериментов. В школе он учился без особого усердия, никогда и ничем не выделялся, получил плохие оценки на общем экзамене по математике и тестах по чтению (но при этом показал отличные результаты по естествознанию).

Для новой пушки он хотел найти радий. Дэв начал лазить по окрестным свалкам и антикварным магазинам в поисках часов, где, в светящейся краске циферблата использовался радий. Если такие часы ему попадались, то он соскребал с них краску и складывал ее в пузырек.

Однажды он медленно прогуливался по улице городка Клинтон, и как он рассказывал, в одной из витрин антикварного магазина, ему попались на глаза старые настольные часы. При близком «хаке» часов он обнаружил, что тут можно наскрести целый пузырек радиевой краски. Он купил часы за $10.

Потом он занялся радием и перевел его в форму соли. Понимал он это или нет, но в этот момент он подвергал себя опасности.

Эрб из NRC сообщил ему, что «лучший материал из которого альфа-частицы могут продуцировать нейтроны - это бериллий». Дэвид попросил своего друга, чтобы тот стащил для него бериллий из химической лаборатории, а затем поместил его перед свинцовой коробкой, внутри которой находился радий. Его занятной пушке из америция на замену пришла более мощная радиевая пушка.

Для строительства ядерного реактора в домашних условиях изобретатель сумел найти некоторое количество смоляной (урановой) обманки, руды, в которой уран содержится в небольших количествах, и раздробил ее кувалдой в пыль. Он направил лучи из его пушки на порошок, в надежде, что ему удастся получить, хотя бы некоторое количество расщепляемого изотопа. У него не получилось. Нейтроны, представлявшие снаряды в его пушке, двигались слишком быстро.

«Неминуемая опасность»

После того как ему исполнилось 17 лет, Дэвидом овладела идея построения модели бридерного ядерного реактора, то есть такого ядерного реактора, который не только генерировал электричество, но и производил новое топливо. В его модели должны были использоваться настоящие радиоактивные элементы и происходить настоящие ядерные реакции. В качестве рабочего чертежа он собирался использовать схему, которую он нашел в одном из учебников своего отца.

Всячески пренебрегая техникой безопасности, был смешан радий и америций, которые находились у него на руках вместе с бериллием и алюминием. Смесь была завернута в алюминиевую фольгу, из которой он сделал подобие рабочей зоны ядерного реактора. Радиоактивный шар был окружен небольшими, завернутыми в фольгу кубиками из ториевой золы и урановой пудры, связанные вместе сантехническим бинтом.

«Он был радиоактивен, как черт знает что», - говорил Дэвид, - «гораздо больше, чем в разобранном состоянии». Тут он начал понимать, что подвергает себя и окружающих серьезной опасности.

Когда счетчик Гейгера, который был у Дэвида начал регистрировать радиационное излучение за пять домов от местожительства его матери, он решил что у него «слишком много радиоактивных веществ в одном месте», после чего он решил разобрать ядерный реактор. Он спрятал часть материалов в доме матери, оставил некоторую часть в сарае, а оставшееся сложил в багажник своего «Понтиака».

В 2:40 ночи 31 августа, 1994 г. в полицию Клинтона, позвонил неизвестный и сообщил, что какой-то молодой человек, похоже, пытается украсть покрышки от машины. Когда полиция приехала, Дэвид сказал им, что он собирается встречать своего друга. Полиции это показалось неубедительным, и они решили осмотреть автомобиль.

Они открыли багажник и обнаружили в нем ящик из под инструментов, который был закрыт на замок и замотан сантехническим бинтом. Здесь же лежали замотанные в фольгу кубики с каким-то загадочным серым порошком, небольшие диски, цилиндрические металлические предметы, а также ртутные реле. Полицейских сильно насторожила коробка из под инструментов, про которую Дэвид сказал им, что она радиоактивна, и они боялись ее как атомной бомбы.

Был введен в действие федеральный план противодействия радиоактивной угрозе, а официальные лица штата начали консультироваться с EPA и NRC.

В сарае, эксперты-радиологи обнаружили алюминиевую форму для выпечки пирогов, чашку Pyrex из огнеупорного стекла, ящик из-под молочных бутылок, а также массу других вещей, зараженных радиацией, уровень которой в тысячу раз превышал естественный. Так как ее могло разнести по округе ветром и дождем, а также отсутствием сохранности в самом сарае, то в соответствии с меморандумом EPA,» это представляло собой неминуемую угрозу общественному здоровью».

После того как рабочие в защитных костюмах разобрали сарай, они сложили все, что оставалось в 39 бочек, которые были погружены на грузовики и вывезены на могильник в Великую Соляную Пустыню. Там, останки экспериментов по строительству ядреного реактора в домашних условиях, были захоронены вместе с другим радиоактивным мусором.

«Это была ситуация, которую регулирование было не в силах предвидеть», - сказал Дэйв Минаар, эксперт-радиолог из Мичиганского Департамента Качества Окружающей Среды, - «Считалось, что обычный человек не сможет получить в руки технологию или материалы, требующиеся для занятий экспериментами в этой области».

Сейчас Дэвид Хан сейчас находится в ВМФ, где он читает о стероидах, меланине, генетическом коде, прототипах ядерных реакторов, аминокислотах и уголовном праве. «Я хотел, чтобы в моей жизни было что-нибудь заметное», - объясняет он теперь. «У меня еще есть время». По поводу получения им дозы радиации, он сказал, - «Я не думаю, что отнял у себя больше, чем пять лет жизни».

«А за хранение ядерных отходов дома мы получаем скидку по ипотеке», — такова была шутка некоего карикатуриста, не слишком любящего атомную энергетику. Но хотя АЭС на кухне ещё не созданы, похоже, всё идёт к тому. Как вам миниатюрная ядерная станция, предназначенная для групп домов или частных фирм? Её уже можно заказать у производителя. Юридические согласования в своей стране – оставим за рамками рассказа.

Недавно американский консорциум федеральных лабораторий для передачи технологий (FLC) вручил премию Notable Technology Development Award компании Hyperion Power Generation из Санта-Фе. Выдающимся достижением признан Hyperion Power Module — почти домашний энергетический ядерный реактор.

Hyperion — необычайно компактная установка, питаемая низкообогащённым ураном. Она способна выдавать электрическую мощность 25-27 мегаватт, которых хватит на 20 тысяч среднестатистических домохозяйств или не слишком крупное промышленное предприятие. Цена «ядерного» электричества от этого устройства составит 10 центов за киловатт-час, обещают разработчики.

Но, может, сами эти «реакторы будущего» баснословно дороги? Нет. Джон Дил (John Deal), исполнительный директор Hyperion, говорит: «Они будут стоить примерно $25 миллионов. Для сообщества в 10 тысяч домохозяйств это окажется весьма доступным приобретением — всего $2500 на дом».

Помимо стального корпуса Hyperion облачён ещё и в бетонную оболочку. Наружу выходят только несколько труб. Интересно, что для перегрузки ядерного топлива весь реакторный модуль предполагается демонтировать и отвозить на завод-изготовитель, а потом (со свежим «зарядом») – обратно. Благо этот реактор легко транспортировать на грузовике, самолёте или судне. Накладно? Зато очень безопасно. Для конечного пользователя этот агрегат будет «невскрываемым ящиком» (иллюстрация Los Alamos National Laboratory).

Что-то определённо меняется в мире. Вдумайтесь — речь идёт о маленькой, но настоящей АЭС. Вы готовы увидеть такую в соседнем дворе? Впрочем, полюбоваться новинкой не получится, разве что во время монтажа. Ведь Hyperion Power Module должны зарывать в грунт — ради пущей безопасности, разумеется.

Первыми покупателями новинки станут, однако, не эксцентричные владельцы коттеджей в престижных районах (представляете, лениво так бросить в разговоре: «А я вчера портативную АЭС купил...»), а промышленные компании. Hyperion уже получила заказы на 100 своих установок, главным образом от предприятий нефтяного и энергетического комплекса.

Производство модулей Hyperion должно начаться в течение пяти лет. Первый экземпляр уйдёт в Румынию на одно из предприятий чешской компании TES , которая уже приобрела шесть реакторов, что называется, «с ватманского листа» и намечает купить ещё 12. Интерес к Hyperion проявили и на Каймановых островах, в Панаме, на Багамах...

Но это только начало. Hyperion Power Generation намерена открыть три завода в разных частях света, чтобы в период c 2013 по 2023 год выпустить 4000 таких установок.


Атомный реактор в наручных часах? Спокойно – это просто «дизайнерские» часики Radio Active от Tokyoflash. Ныне уже не выпускающиеся. Индикация загрузки активной зоны и уровня излучения отражает часы и минуты (фотографии с сайта tokyoflash.com).

Какой смысл в большом количестве крошечных атомных станций? В оправданности внедрения таких источников энергии в удалённых местностях, даже в совсем небольших поселениях, в высоком темпе строительства (обычную АЭС строят лет 10, портативную, собранную на заводе, смонтируют на месте «на раз-два»), в низкой цене и простоте.

Если привычные атомные электростанции вырабатывают гигаватты энергии, новое поколение малых и, можно даже сказать, миниатюрных АЭС (к которым и относится произведение Hyperion Power Generation) оперирует мощностями, на два-три порядка меньшими.

Такие небольшие реакторы сами по себе — не новость. Достаточно вспомнить стратегические субмарины, авианосцы или ледоколы «на атомном ходу». Но одно дело — флоты, являющиеся «игрушками» гигантской государственной машины, и совсем другое — собственная АЭС, которую может купить какой-нибудь богатый городок вскладчину.

Главное, чтобы городок был прогрессивный и доверял учёным с инженерами. А что утверждают последние?

Полностью саморегулирующаяся система Hyperion обладает внутренне присущей безопасностью. Авторы технологии уверяют, что этот реактор никогда не выйдет на сверхкритический режим и никогда не расплавится от перегрева, а если кто-то преднамеренно повредит оболочку (которую вообще-то предполагается «хоронить» под землю и охранять), крошечное количество активного материала быстро остынет. (При этом из имеющегося в устройстве ядерного топлива нельзя получить уран «оружейных кондиций», подчёркивает компания.)

Внутри основного модуля нет подвижных частей, что повышает надёжность системы. И эта АЭС не нуждается в обслуживании в течение месяцев, а то и лет. Она автоматически настраивает генерируемую мощность в зависимости от текущей нагрузки в сети. А срок работы на одной заправке составляет (по разным данным) от 5 до 10 лет. При этом ядерные отходы за один цикл оказываются по размеру вдвое меньше футбольного мяча.

За десятилетия карьеры Отис Петерсон получил немало наград за разработки не только в ядерной сфере, но и, к примеру, в области лазеров (фото Los Alamos National Laboratory).

Тут пора сказать об изобретателе сверхминиатюрного энергетического реактора. Это доктор Отис Пит Петерсон (Otis «Pete» Peterson) из национальной лаборатории в Лос-Аламосе (Los Alamos National Laboratory). Именно в колыбели атомной бомбы и шла первоначальная работа над установкой, ныне получившей имя Hyperion. Причём дизайн аппарата восходит к проекту едва ли не 50-летней давности, уже доказавшему свою безопасность и простоту использования в роли так называемого учебного реактора.

Помните, в начале мы говорили о призе от консорциума по передаче технологий? Все «секреты» миниатюрной АЭС как раз и были переданы лос-аламосской лабораторией фирме Hyperion, которая получила от государства лицензию на тиражирование и коммерциализацию разработки Петерсона.

Кстати, в том же Лос-Аламосе находится второй офис компании Hyperion, тот, где трудятся разработчики чудо-системы. В столице же штата расположена штаб-квартира фирмы.

Интересно, что Hyperion Power Generation не является первооткрывателем ниши миниатюрных гражданских АЭС. Она лишь являет собой яркий пример набирающего силу нового направления в отрасли, предполагающего, что крошечные и предельно автоматизированные атомные станции, разбросанные по удалённым уголкам мира, помогут и отдельным населённым пунктам, испытывающим трудности с энергообеспечением, и планете в целом — за счёт сокращения выбросов парниковых газов.

Неужели это ренессанс атомной энергетики, проглядывающий из-за пелены общественного недоверия (вызванного, в первую очередь, трагедией Чернобыля)? Мы не возьмёмся утверждать наверняка. Но давайте посмотрим на другие примеры.


В 1960-х годах в обществе наблюдался удивительный оптимизм относительно будущего атомной энергетики. Некоторые грезили даже автомобилями на атомной тяге, а услужливые промышленники подогревали интерес публики «атомными концептами» (таковым был Ford Seattle-ite XXI 1962 года – на снимке). О его истории вы можете (фото с сайта shorey.net).

«Плавучая атомная теплоэлектростанция» (ПАТЭС) — это, конечно, ещё не «домашний реактор» (всё-таки это судно-АЭС будет весить более 20 тысяч тонн), но электрическая выходная мощность в 70 мегаватт позволяет записать российский проект (развивающийся не первый год) в упомянутую выше категорию.

Два реактора на борту «баржи» ПАТЭС, «припаркованной» у берега, должны поставлять тому или иному городу и электричество, и тепло. Конструктивно установка схожа с силовыми установками атомных ледоколов, богатейший опыт эксплуатации которых имеется в нашей стране. Такая станция намного дешевле классической АЭС.

Пилотный образец ПАТЭС уже строится в Северодвинске (где и будет работать). В планах — Певек и Вилючинск.

А ещё просто необходимо вспомнить мини-АЭС Toshiba 4S — действительно крошечный реактор (подземный, капсулированный), способный поставлять в сеть 10 мегаватт.

Японцы давно уже предложили установить такую мини-станцию на Аляске — в городке Галена (Galena), насчитывающем менее 700 жителей. Однако проект Galena Nuclear Power Plant уже не первый год ползёт через всяческие согласования и разрешения.


ПАТЭС и Toshiba 4S (иллюстрации Госкорпорация по атомной энергии России/Севмаш, Toshiba).

Собственно обитатели Галены — за. Городской совет уже не раз высказывался в пользу установки станции. Оно и понятно. Японские инженеры клятвенно заверяют, что безопасность 4S (расшифровывается, к слову, как Super Safe, Small, Simple) беспрецедентно высока (в силу самих особенностей конструкции). Так что опасения по поводу пресловутого взрыва можно положить на самую дальнюю полку и посмотреть на выгоду затеи.

Toshiba поставит реактор бесплатно! Она будет лишь брать с галенцев «оброк» за выработанное электричество: всего-то 5-13 центов за киловатт-час. Если сравнить с нынешними затратами данного поселения на солярку, которую везут за тридевять земель, выбор становится ясен.

Станция 4S должна проработать внушительные 30 лет без перезагрузки топлива (а это металлический сплав урана, плутония и циркония, который ранее тестировался, но никогда не выпускался как коммерческое ядерное горючее). Кстати, для сравнения, реакторы ПАТЭС потребуют перегрузки топлива через 12 лет после запуска.

Toshiba намерена направить заявление в Ядерную регуляторную комиссию США (Nuclear Regulatory Commission) в 2009 году, и, если ответ будет положительным, станция на Аляске может быть запущена в 2012 или 2013 году.

Благотворительность японцев легко объяснима — если проект в Галене окажется успешным, Toshiba попробует продавать 4S по всей Америке.

Да и российская плавучая АЭС вполне может пойти на экспорт (Острова Зелёного Мыса уже проявили интерес). Тут кстати, надо отметить, что российские атомщики пишут: особенно перспективна связка ПАТЭС с опреснительной установкой. Такой автономный комплекс был бы востребован во многих странах.

Показательно: аналогичное применение прочат своему мини-реактору и спецы из Hyperion Power Generation.


АЭС Hyperion в комплекте с опреснительной системой (иллюстрация Hyperion Power Generation).

Эта фирма вообще рассматривает заводы и фабрики лишь как одну часть потенциальных покупателей маленькой АЭС. Жилой сектор – вторая предполагаемая половина.

Уменьшение зависимости от импортной нефти, борьба с глобальным потеплением – всё идёт в ход, чтобы убедить Америку – пришла пора малых ядерных реакторов.

И в этом порыве та же Toshiba вторит заокеанским единомышленникам. Она испытывает прототип ещё более компактной (2 х 6 м) АЭС с выходной мощностью всего 200 киловатт, сообщает Guardian. Такая установка могла бы питать один дом 40 лет.

Любопытно, сколько будут брать с частников за вывоз и захоронение отработанного ядерного топлива? Представляете такую графу в жировке из ДЕЗа?

Выбор редакции
Положения Федерального закона от 05.04.2013г. № 44-ФЗ, касающиеся контрактной службы и контрактного управляющего вступили в силу с...

21.09.2013 Категория: Доска почета Просмотров: 7561 Это интервью далось не просто. Нет, в том, что Андрей Каменев – интересный...

«У нас такой ремонт хороший сделан, товар свежий, акции проводим регулярно, цены не хуже, чем у конкурентов, а выручки почему-то нет», -...

Ищете работу или планируете ее искать? Вам поможет наш образец заполнения резюме на должность менеджера по туризму (опытного специалиста...
Слайд 2 Задачи урока: Познакомить учащихся с различными формами борьбы за существование;Научить правильно определять формы борьбы за...
1 из 18 Презентация на тему: № слайда 1 Описание слайда: № слайда 2 Описание слайда: Общие сведения Столица: Рим...
Цель: Раскрытие внутреннего творческого потенциала учителя. консолидация группы, формирование в ней эмоционально позитивной атмосферы;...
УТВЕРЖДАЮ: [Наименование должности]_______________________________ _______________________________ [Наименование...
На средних и крупных предприятиях объем работы бухгалтерии достаточно велик, чтобы с ним мог справиться один бухгалтер. Поэтому часто...